Le frazioni sono uno degli argomenti fondamentali della matematica di base. Capire la differenza tra frazioni proprie, improprie e apparenti è essenziale per svolgere calcoli corretti e interpretare i numeri. In questa guida troverai definizioni chiare, tanti esempi e anche esercizi utili, ideali per studenti di scuola primaria e secondaria.
Cosa sono le frazioni e quali tipi esistono
Una frazione è un numero che rappresenta una parte di un intero, ed è scritta come rapporto tra due numeri:
- numeratore (in alto): indica quante parti consideriamo;
- denominatore (in basso): indica in quante parti è stato diviso l’intero.
Esistono diversi tipi di frazioni:
Tabella comparativa: frazione propria, impropria e apparente
confronto tra definizione, valore e esempi. notazione con 3/5.
Tipo | Definizione | Valore | Esempi |
---|---|---|---|
Propria | il numeratore è minore del denominatore | minore di 1 | 1/2, 3/5, 7/10 |
Impropria | il numeratore è maggiore del denominatore e non è un suo multiplo | maggiore di 1 | 7/5, 9/4, 11/6 |
Apparente | il numeratore è uguale al denominatore oppure un suo multiplo | numero intero | 8/8 = 1, 12/6 = 2, 15/5 = 3 |
Esempi ed esercizi interattivi sulle frazioni
Esercizi interattivi sulle frazioni
Scegli il tipo corretto per ogni frazione.
Suggerimento: una frazione è apparente quando il numeratore è uguale al denominatore o un suo multiplo.
Frazione propria: definizione ed esempi
Una frazione propria è quella in cui il numeratore è minore del denominatore. Rappresenta quindi una quantità minore di 1.
👉 Esempi di frazioni proprie:
- ½
- ³⁄₅
- ⁷⁄₁₀
- ²⁄₉
- ¹¹⁄₂₀
In generale, quando il numeratore è sempre più piccolo, la frazione rappresenta una parte di un intero, come ⅔ di una pizza.
📌 10 frazioni proprie: ⅓, ⅖, ⅜, ⁴⁄₉, ⁵⁄₁₁, ⁷⁄₁₂, ²⁄₇, ⁹⁄₂₀, ¹³⁄₃₀, ¹⁵⁄₃₁.
Frazione impropria: come riconoscerla e calcolarla
Una frazione impropria è quella in cui il numeratore è maggiore del denominatore e non è un multiplo di esso. In questo caso la frazione rappresenta un numero maggiore di 1.
👉 Esempi di frazioni improprie:
- ⁷⁄₅
- ⁹⁄₄
- ¹¹⁄₆
- ¹⁴⁄₁₀
- ²⁷⁄₅
📌 10 frazioni improprie: ⁵⁄₃, ⁷⁄₄, ⁹⁄₈, ¹¹⁄₇, ¹³⁄₉, ¹⁵⁄₁₁, ¹⁹⁄₁₂, ²¹⁄₁₃, ²⁵⁄₁₆, ²⁷⁄₂₀.
🔎 Queste frazioni possono essere trasformate in numeri misti:
es. ²⁷⁄₅ = 5 + ²⁄₅.
In alcuni esercizi è anche richiesto di calcolare l’intero: se prendo ²⁷⁄₅, posso dire che ci sono 5 interi completi e una parte residua di ²⁄₅.
Frazione apparente: definizione ed esempi
Una frazione apparente è una frazione che rappresenta un numero intero. Questo accade quando:
- il numeratore è uguale al denominatore (es. ⁸⁄₈ = 1);
- il numeratore è un multiplo del denominatore (es. ¹²⁄₆ = 2).
👉 Esempi di frazioni apparenti:
- ⁶⁄₃ = 2
- ⁹⁄₉ = 1
- ²⁰⁄₁₀ = 2
- ¹⁵⁄₅ = 3
- ⁶⁸⁄₁₇ = 4
📌 10 frazioni apparenti: ²⁄₂, ⁴⁄₂, ⁶⁄₂, ⁸⁄₄, ¹⁰⁄₅, ¹²⁄₆, ¹⁵⁄₃, ¹⁸⁄₆, ²¹⁄₇, ¹⁰⁰⁄₁₀.